References



1.         Wayne M. Thomas, E.D.N., James C. Needham, Michael G. Murch, Peter Temple-Smith, Christopher J. Dawes, Friction welding. 1991.

2.         Cavaliere, P., et al., Mechanical and microstructural behaviour of 2024-7075 aluminium alloy sheets joined by friction stir welding. International Journal of Machine Tools and Manufacture, 2006. 46(6): p. 588-594.

3.         Brian J. Dracup, W.J.A., Friction stir welding as a rivet replacement technology. 2003: United States of America.

4.         Wadeson, D.A., et al., Corrosion behaviour of friction stir welded AA7108 T79 aluminium alloy. Corrosion Science, 2006. 48(4): p. 887-897.

5.         Maggiolino, S. and C. Schmid, Corrosion resistance in FSW and in MIG welding techniques of AA6XXX. Journal of Materials Processing Technology, 2008.197(1-3): p. 237-240.

6.         Wang, X., et al., Comparison of fatigue property between friction stir and TIG welds. Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material, 2008. 15(3): p. 280-284.

7.         Moreira, P.M.G.P., M.A.V. de Figueiredo, and P.M.S.T. de Castro, Fatigue behaviour of FSW and MIG weldments for two aluminium alloys. Theoretical and Applied Fracture Mechanics, 2007. 48(2): p. 169-177.

8.         Bělský, I.P., Friction Stir Welding of Aircraft structures. Czech Aerospace Proceedings, 2002. 2/2002: p. 15-17.

9.         Mishra, R.S. and Z.Y. Ma, Friction stir welding and processing. Materials Science and Engineering: R: Reports, 2005. 50(1-2): p. 1-78.

10.       Elangovan, K. and V. Balasubramanian, Influences of tool pin profile and welding speed on the formation of friction stir processing zone in AA2219 aluminium alloy. Journal of Materials Processing Technology, 2008. 200(1-3): p. 163-175.

11.       Elangovan, K. and V. Balasubramanian, Influences of tool pin profile and tool shoulder diameter on the formation of friction stir processing zone in AA6061 aluminium alloy. Materials & Design, 2008. 29(2): p. 362-373.

12.       Elangovan, K. and V. Balasubramanian, Influences of pin profile and rotational speed of the tool on the formation of friction stir processing zone in AA2219 aluminium alloy. Materials Science and Engineering: A, 2007. 459(1-2): p. 7-18.

13.       Fujii, H., et al., Effect of tool shape on mechanical properties and microstructure of friction stir welded aluminum alloys. Materials Science and Engineering: A, 2006. 419(1-2): p. 25-31.

14.       Hattingh, D.G., et al., Characterization of the influences of FSW tool geometry on welding forces and weld tensile strength using an instrumented tool.Journal of Materials Processing Technology, 2008. 203(1-3): p. 46-57.

15.       Zeng, W.M., H.L. Wu, and J. Zhang, EFFECT OF TOOL WEAR ON MICROSTRUCTURE, MECHANICAL PROPERTIES AND ACOUSTIC EMISSION OF FRICTION STIR WELDED 6061 Al ALLOY. Acta Metallurgica Sinica (English Letters), 2006. 19(1): p. 9-19.

16.       Abbasi Gharacheh, M., et al., The influence of the ratio of "rotational speed/traverse speed" ([omega]/v) on mechanical properties of AZ31 friction stir welds. International Journal of Machine Tools and Manufacture, 2006. 46(15): p. 1983-1987.

17.       Ren, S.R., Z.Y. Ma, and L.Q. Chen, Effect of welding parameters on tensile properties and fracture behavior of friction stir welded Al-Mg-Si alloy. Scripta Materialia, 2007. 56(1): p. 69-72.

18.       Squillace, A., et al., Optimization of friction stir welds of aluminium alloys, in Intelligent Production Machines and Systems. 2006, Elsevier Science Ltd: Oxford. p. 247-252.

19.       Amancio-Filho, S.T., et al., Preliminary study on the microstructure and mechanical properties of dissimilar friction stir welds in aircraft aluminium alloys 2024-T351 and 6056-T4. Journal of Materials Processing Technology, 2008. 206(1-3): p. 132-142.

20.       Cavaliere, P., A. Squillace, and F. Panella, Effect of welding parameters on mechanical and microstructural properties of AA6082 joints produced by friction stir welding. Journal of Materials Processing Technology, 2008. 200(1-3): p. 364-372.

21.       Ing. Petr Bělský, L. Kolařík, and M. Válová, Inovative Welding Technologies for Joining Al Alloy 6082-T6. Czech Aerospace Proceedings, 2008. 2/2008: p. 2-5.

22.       Srivatsan, T.S., S. Vasudevan, and L. Park, The tensile deformation and fracture behavior of friction stir welded aluminum alloy 2024. Materials Science and Engineering: A, 2007. 466(1-2): p. 235-245.

23.       Nandan, R., T. DebRoy, and H.K.D.H. Bhadeshia, Recent advances in friction-stir welding - Process, weldment structure and properties. Progress in Materials Science, 2008. 53(6): p. 980-1023.

24.       Leitao, C., et al., Mechanical behaviour of similar and dissimilar AA5182-H111 and AA6016-T4 thin friction stir welds. Materials & Design, 2009. 30(1): p. 101-108.

25.       Pirondi, A., L. Collini, and D. Fersini, Fracture and fatigue crack growth behaviour of PMMC friction stir welded butt joints. Engineering Fracture Mechanics, 2008. 75(15): p. 4333-4342.

26.       Nielsen, K.L., Ductile damage development in friction stir welded aluminum (AA2024) joints. Engineering Fracture Mechanics, 2008. 75(10): p. 2795-2811.

27.       Lombard, H., et al., Optimising FSW process parameters to minimise defects and maximise fatigue life in 5083-H321 aluminium alloy. Engineering Fracture Mechanics, 2008. 75(3-4): p. 341-354.

28.       Fratini, L., S. Pasta, and A.P. Reynolds, Fatigue crack growth in 2024-T351 friction stir welded joints: Longitudinal residual stress and microstructural effects. International Journal of Fatigue, 2009. 31(3): p. 495-500.

29.       Cavaliere, P. and F. Panella, Effect of tool position on the fatigue properties of dissimilar 2024-7075 sheets joined by friction stir welding. Journal of Materials Processing Technology, 2008. 206(1-3): p. 249-255.

30.       Hamilton, C., S. Dymek, and A. Sommers, A thermal model of friction stir welding in aluminum alloys. International Journal of Machine Tools and Manufacture, 2008. 48(10): p. 1120-1130.

31.       Sauvage, X., et al., Precipitate stability and recrystallisation in the weld nuggets of friction stir welded Al-Mg-Si and Al-Mg-Sc alloys. Materials Science and Engineering: A, 2008. 491(1-2): p. 364-371.

32.       Jones, M.J., et al., Correlation between microstructure and microhardness in a friction stir welded 2024 aluminium alloy. Scripta Materialia, 2005. 52(8): p. 693-697.

33.       Ali, A., et al., The effect of controlled shot peening on the fatigue behaviour of 2024-T3 aluminium friction stir welds. International Journal of Fatigue, 2007.29(8): p. 1531-1545.

34.       Ali, A., M.W. Brown, and C.A. Rodopoulos, Modelling of crack coalescence in 2024-T351 Al alloy friction stir welded joints. International Journal of Fatigue, 2008. 30(10-11): p. 2030-2043.

35.       Di, S., et al., Comparative study on fatigue properties between AA2024-T4 friction stir welds and base materials. Materials Science and Engineering: A, 2006.435-436: p. 389-395.

36.       Fratini, L., S. Pasta, and A.P. Reynolds, Fatigue crack growth in 2024-T351 friction stir welded joints: Longitudinal residual stress and microstructural effects. International Journal of Fatigue, 2008. In Press, Corrected Proof.

37.       Genevois, C., et al., Quantitative investigation of precipitation and mechanical behaviour for AA2024 friction stir welds. Acta Materialia, 2005. 53(8): p. 2447-2458.

38.       Genevois, C., A. Deschamps, and P. Vacher, Comparative study on local and global mechanical properties of 2024 T351, 2024 T6 and 5251 O friction stir welds. Materials Science and Engineering: A, 2006. 415(1-2): p. 162-170.

39.       Genevois, C., et al., On the coupling between precipitation and plastic deformation in relation with friction stir welding of AA2024 T3 aluminium alloy.Materials Science and Engineering: A, 2006. 441(1-2): p. 39-48.

40.       Jariyaboon, M., et al., The effect of welding parameters on the corrosion behaviour of friction stir welded AA2024-T351. Corrosion Science, 2007. 49(2): p. 877-909.

41.       Khandkar, M.Z.H., et al., Predicting residual thermal stresses in friction stir welded metals. Journal of Materials Processing Technology, 2006. 174(1-3): p. 195-203.

42.       Mandal, S., J. Rice, and A.A. Elmustafa, Experimental and numerical investigation of the plunge stage in friction stir welding. Journal of Materials Processing Technology, 2008. 203(1-3): p. 411-419.

43.       Richards, D.G., et al., Global mechanical tensioning for the management of residual stresses in welds. Materials Science and Engineering: A, 2008. 489(1-2): p. 351-362.

44.       Schmidt, H.N.B., T.L. Dickerson, and J.H. Hattel, Material flow in butt friction stir welds in AA2024-T3. Acta Materialia, 2006. 54(4): p. 1199-1209.

45.       Scialpi, A., et al., Mechanical analysis of ultra-thin friction stir welding joined sheets with dissimilar and similar materials. Materials & Design, 2008. 29(5): p. 928-936.

46.       Squillace, A., et al., A comparison between FSW and TIG welding techniques: modifications of microstructure and pitting corrosion resistance in AA 2024-T3 butt joints. Journal of Materials Processing Technology, 2004. 152(1): p. 97-105.

47.       Yan, J., M.A. Sutton, and A.P. Reynolds, Notch tensile response of mini-regions in AA2024 and AA2524 friction stir welds. Materials Science and Engineering: A, 2006. 427(1-2): p. 289-300.

48.       Yang, Y., et al., Automatic gap detection in friction stir butt welding operations. International Journal of Machine Tools and Manufacture, 2008. 48(10): p. 1161-1169.

49.       Zadpoor, A.A., et al., Mechanical properties and microstructure of friction stir welded tailor-made blanks. Materials Science and Engineering: A, 2008.494(1-2): p. 281-290.

50.       Zhou, C., X. Yang, and G. Luan, Effect of oxide array on the fatigue property of friction stir welds. Scripta Materialia, 2006. 54(8): p. 1515-1520.

51.       Zhou, C., X. Yang, and G. Luan, Effect of root flaws on the fatigue property of friction stir welds in 2024-T3 aluminum alloys. Materials Science and Engineering: A, 2006. 418(1-2): p. 155-160.

52.       Chen, Y., H. Liu, and J. Feng, Friction stir welding characteristics of different heat-treated-state 2219 aluminum alloy plates. Materials Science and Engineering: A, 2006. 420(1-2): p. 21-25.

53.       Chen, Y.C., J.C. Feng, and H.J. Liu, Stability of the grain structure in 2219-O aluminum alloy friction stir welds during solution treatment. Materials Characterization, 2007. 58(2): p. 174-178.

54.       Paglia, C.S. and R.G. Buchheit, Microstructure, microchemistry and environmental cracking susceptibility of friction stir welded 2219-T87. Materials Science and Engineering: A, 2006. 429(1-2): p. 107-114.

55.       Prasad Rao, K., G.D. Janaki Ram, and B.E. Stucker, Improvement in corrosion resistance of friction stir welded aluminum alloys with micro arc oxidation coatings. Scripta Materialia, 2008. 58(11): p. 998-1001.

56.       Su, J.-Q., T.W. Nelson, and C.J. Sterling, Microstructure evolution during FSW/FSP of high strength aluminum alloys. Materials Science and Engineering: A, 2005. 405(1-2): p. 277-286.

57.       Di, S., et al., The influence of zigzag-curve defect on the fatigue properties of friction stir welds in 7075-T6 Al alloy. Materials Chemistry and Physics, 2007.104(2-3): p. 244-248.

58.       Xu, W., et al., Microstructure and mechanical properties of friction stir welded joints in 2219-T6 aluminum alloy. Materials & Design. In Press, Corrected Proof.

59.       Hatamleh, O., A comprehensive investigation on the effects of laser and shot peening on fatigue crack growth in friction stir welded AA 2195 joints.International Journal of Fatigue, 2009. 31(5): p. 974-988.

60.       Hatamleh, O., P.M. Singh, and H. Garmestani, Corrosion susceptibility of peened friction stir welded 7075 aluminum alloy joints. Corrosion Science, 2009.51(1): p. 135-143.

61.       Paglia, C.S. and R.G. Buchheit, A look in the corrosion of aluminum alloy friction stir welds. Scripta Materialia, 2008. 58(5): p. 383-387.

62.       Linton, V.M. and M.I. Ripley, Influence of time on residual stresses in friction stir welds in agehardenable 7xxx aluminium alloys. Acta Materialia, 2008.56(16): p. 4319-4327.

63.       Pouget, G. and A.P. Reynolds, Residual stress and microstructure effects on fatigue crack growth in AA2050 friction stir welds. International Journal of Fatigue, 2008. 30(3): p. 463-472.

64.       Fratini, L. and B. Zuccarello, An analysis of through-thickness residual stresses in aluminium FSW butt joints. International Journal of Machine Tools and Manufacture, 2006. 46(6): p. 611-619.

65.       Altenkirch, J., et al., The effect of tensioning and sectioning on residual stresses in aluminium AA7749 friction stir welds. Materials Science and Engineering: A, 2008. 488(1-2): p. 16-24.

66.       Hatamleh, O., Effects of peening on mechanical properties in friction stir welded 2195 aluminum alloy joints. Materials Science and Engineering: A, 2008.492(1-2): p. 168-176.

67.       Minton, T. and D.J. Mynors, Utilisation of engineering workshop equipment for friction stir welding. Journal of Materials Processing Technology, 2006.177(1-3): p. 336-339.

68.       ESAB LEGIOTM A modular Friction Stir Welding system.

69.       ESAB - Friction Stir Welding.

70.       AydIn, H., et al., Tensile properties of friction stir welded joints of 2024 aluminum alloys in different heat-treated-state. Materials & Design, 2009. 30(6): p. 2211-2221.

71.       Paglia, C.S. and R.G. Buchheit, The time-temperature-corrosion susceptibility in a 7050-T7451 friction stir weld. Materials Science and Engineering: A, 2008.492(1-2): p. 250-254.

72.       Simar, A., et al., Microstructure, local and global mechanical properties of friction stir welds in aluminium alloy 6005A-T6. Materials Science and Engineering: A, 2008. 486(1-2): p. 85-95.

73.       Institute, T.W. Friction Stir Welding - Equipment.  2009; Available from: http://www.twi.co.uk/content/fswequip.html.

74.       TWI. Tool technology - the heart of friction stir welding.  2009; Available from: http://www.twi.co.uk/content/c1073a.html.

75.       Threadgill, P.A.C.a.P.L. Development of the Trivex Friction Stir Welding Tool.  2003; Available from: http://www.twi.co.uk/content/sppacfeb2003.html.

76.       Scialpi, A., L.A.C. De Filippis, and P. Cavaliere, Influence of shoulder geometry on microstructure and mechanical properties of friction stir welded 6082 aluminium alloy. Materials & Design, 2007. 28(4): p. 1124-1129.

77.       Zhao, Y.-h., et al., The influence of pin geometry on bonding and mechanical properties in friction stir weld 2014 Al alloy. Materials Letters, 2005. 59(23): p. 2948-2952.

78.       Rajiv S. Mishra, M.W.M., Friction Stir Welding and Processing. 2007: ASM International.

79.       M. Pacchione and J. TelgkampChallenges of the Metalic Fuselage, in 25th International Congress of the Aeronautical Sciences. 2006: Hamburg, Germany.

80.       Aviation, E. Inovations at Eclipse Aviation.  2009  [cited 2009 April 23rd]; Available from:http://www.eclipseaviation.com/company/about/innovations.php.

81.       Boyden, E. Conversion Factors, Material Properties and Physical Constants. Available from: http://edboyden.org/constants.html.

82.       ESAB. SuperStir Systems. Available from:http://products.esabna.com/EN/home/friction_stir/q/display_id.id4370a867c84ca9.46984409/path.friction_stir_superstir_systems.



Comments